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The strengths and shortcomings of the point dipole model for polar fluids of spherical
molecules are illustrated by considering the physically more relevant case of extended dipoles
formed by two opposite charges � q separated by a distance d (dipole moment �¼ qd).
Extensive molecular dynamics simulations on a high-density dipolar fluid are used to analyse
the dependence of the pair structure, dielectric constant � and dynamics as a function of the
ratio d/� (� is the molecular diameter), for a fixed dipole moment �. The point dipole model
is found to agree well with the extended dipole model up to d=� ’ 0:3. Beyond that ratio,
� shows a non-trivial variation with d/�. When d=�>0:6, a transition is observed towards
a hexagonal columnar phase; the corresponding value of the dipole moment is found to be
substantially lower than the value of the point dipole required to drive a similar transition.

1. Introduction

Highly polar fluids are particularly important in

many areas of physical chemistry, chemical engineering

and biology, because of their role as solvents leading

to electrolyte and polyelectrolyte dissociation. Water is

of course the most important among polar liquids,

but because of its complex behaviour, primarily linked

to the formation of hydrogen-bond networks, much

theoretical work has focused on simpler models invol-

ving spherical molecules with point dipoles. The best

known and most widely studied examples are dipolar

hard spheres (DHS), dipolar soft spheres (DSS), and

the Stockmayer model (dipolar+Lennard-Jones inter-

actions). A long-standing problem, going back to the

classic work of Onsager [1] and Kirkwood [2], is to

relate the dielectric response of a polar fluid to

molecular dipole fluctuations and correlations (for

reviews, see [3]). Subtle conceptual and numerical

problems arise in molecular dynamics or Monte Carlo

simulations of finite samples of polar fluids, which are

linked to the infinite range of the dipolar interactions,

so that boundary conditions must be treated adequately.

These issues were resolved in the early 1980s, for both

the reaction field and the Ewald summation imple-

mentations of boundary-conditions [4–6]. Despite this

theoretical progress, accurate estimates of the dielectric

permittivity of simple polar fluids by numerical simu-

lation remain a very challenging task, because large

fluctuations of the total dipole moment of the sample

occur on a relatively long time scale (of the order of

10 ps), leading to a very slow convergence rate for the

dielectric constant [7, 8] (see also } 3).

More recently, it was realized that simple dipolar

liquids can form a ferroelectric nematic phase for

sufficiently large dipole moments [9–11]. This transi-

tion is intimately related to the formation of chains of

dipoles aligned head-to-tail, which prevent the forma-

tion of a proper liquid phase in the Stockmayer model

if the dispersive energy is below a certain threshold [12].

However, point dipoles represent a limiting situation,

never achieved in real polar molecules, which are

characterized by extended charge distributions linked

to electronic charge transfer from electron donors to

electron acceptor atoms. In simple heteronuclear dia-

tomic molecules such as CO or HF, this situation can

be modelled by assigning fractional charges of opposite

sign to sites that are separated by a distance d, typically

of the order of 0.1 nm [13]. Such situations, or more

complicated ones involving more than two atoms, can

be mimicked by adding higher-order point multipoles

to a point dipole [14], but such an expansion will require

more and more high-order multipoles as two molecules

approach each other.

In this paper, we present a systematic investigation of

the structure, dielectric response and phase behaviour

of a simple model involving spherical molecules carrying

extended (rather than point) dipoles resulting from

opposite charges � q, each displaced symmetrically by*Author for correspondence. e-mail: vcb25@cam.ac.uk
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a distance d/2 from the centre of the molecule. We study

how the properties of the polar liquid change when d

is increased from zero, varying q simultaneously so that

the dipole moment jlj ¼ qd remains constant. Although

polar molecules are never spherical, the model investi-

gated in this paper, which focuses on the electrostatic

rather than steric interactions, is the simplest ‘natural’

extension of the dipolar sphere model towards a more

realistic representation of highly polar fluids. Some

studies on the structure of similar models with extended

dipoles have been published previously, but without an

investigation of their bulk dielectric properties [15, 16].

2. The model and simulation details

We consider a polar fluid made up of spherical

molecules with two embedded point charges � q located

at � d=2 from the centre of the sphere (see figure 1).

The distance jdj is assumed fixed, so the molecule is

not polarizable and carries a permanent dipole moment

l ¼ qd.

Placing the origin at the centre of the sphere, the

multipole moments qlm ¼
R

Y�
lmð�; �Þrl�ðrÞ d

3r, where

�ðrÞ ¼ qdðd=2Þ � qdð�d=2Þ is the molecular charge

distribution [17], are

qlm ¼ 2q
d

2

� �l
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2l þ 1

4p

r

if l odd and m=0

0 otherwise.

8

<

:

ð1Þ

The next non-vanishing moment after the dipole is thus

the octopole, since the quadrupole moment vanishes by

symmetry for this choice of origin.

The interaction energy between two molecules is given

by the sum of a Lennard-Jones interaction

VLJðrÞ ¼ 4u
�

r

� �12

� �

r

� �6
� �

ð2Þ

and the four Coulombic energies due to the point

charges. On figure 2, the electrostatic energy at con-

tact is compared to a truncated multipolar expan-

sion containing the dipole–dipole and dipole–octopole

interactions. The configuration of lowest energy occurs

when the molecular dipoles are aligned head-to-tail

(� ¼ �2 ¼ 0). This minimum energy is lower for extended

than for point dipoles.

A thermodynamic state of the fluid is specified by the

values of the dimensionless parameters:

� reduced density: �� ¼ ��3;

� reduced temperature: T� ¼ kT=u;
� reduced dipole moment: �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2=�3u
p

;

� reduced dipole elongation: d� ¼ d=�:

We studied the influence of dipole elongation on

properties of a dense highly polar fluid phase charac-

terized by �*¼ 0.82, T *¼ 1.15, �*¼ 1.82.y The

reduced moment of inertia of our molecules was

I � ¼ I=m�2 ¼ 0:117, but equilibrium quantities, such

as the dielectric constant and distribution functions, are

independent of I *. We also performed simulations of a

dipolar soft sphere fluid at �*¼ 0.8, T *¼ 1.35 and

�*¼ 2. This thermodynamic state point of the DSS fluid

has been extensively studied by Kusalik in the case of

point dipoles [7, 18].

In all calculations, we employed periodic boundary

conditions. We choose the spherical geometry, that is

the periodic replications of the basic cubic simulation

cell form an infinite sphere, which is itself embedded in

an infinite region of dielectric constant �0. In this case,

the Hamiltonian of the system is

H ¼
X

N

i<j¼1

ðVLJðrijÞ þ qiqjCðrijÞÞ �
�

p1=2

X

N

i¼1

q2i þ
2pM2

ð2�0 þ 1ÞL3
;

ð3Þ

yOur parameters in dimensioned units were T ¼ 300K,
� ¼ 2:45D, � ¼ 0:3668 nm, m ¼ 10 u, I ¼ 0:156 u nm2,
u ¼ 2:1747 kJmol�1.
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Figure 2. Electrostatic interaction energy of two molecules
at contact (jrj ¼ �) for d ¼ �=2.
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Figure 1. A polar molecule with an extended dipole moment.

600 V. Ballenegger and J.-P. Hansen



where L is the side of the box, M ¼
P

i qiri is the total

dipole moment, and

CðrÞ ¼
X

n2Z3

erfcð�jrþ nLjÞ
jrþ nLj

þ 1

pL

X

n6¼0

1

jnj2
exp

�p2jnj2
�2L2

þ 2pi

L
n � r

� �

: ð4Þ

The last term in (3) accounts for the work done against

the depolarizing field created by surface charges induced

on the spherical boundary. This term vanishes only for

metallic boundary conditions (�0 ¼1). The Ewald sums

in C(r) were evaluated using the smooth particle mesh

Ewald method [19] (Ewald coefficient �¼ 3.4705 nm�1,

grid size 32� 32� 32, interpolation order 6). The

interactions were truncated beyond 0.9 nm, both for the

real space Ewald sum and for the Lennard-Jones

interactions.

Molecular dynamics simulations were carried out

using the simulation package gromacs [20]. The

equations of motion were integrated using the so-called

leap-frog algorithm with a reduced time step of dt� ¼
dt=ðm�2=uÞ1=2 ¼ 0:0025. The temperature was kept

constant using a Berendsen thermostat. Equilibration

periods lasted at least 100 ps (50 000 time steps), and

were followed by data-producing runs of 8 ns or more.

The number of molecules was 512 in calculations of

the dielectric constant (} 3), and 5555 in calculations of

correlation functions (} 4).

3. Dipole fluctuations and dielectric constant

The dielectric constant of a homogeneous and isotropic

fluid can be calculated from the fluctuation formula

(see, for example, [21])

ð�� 1Þð2�0 þ 1Þ
2�0 þ �

¼ 4p

3V

M2
� 	

kT
; ð5Þ

which holds for a macroscopic spherical sample of

volume V surrounded by a medium of dielectric

constant �0. The results obtained for the dielectric

constant are independent of the choice of �0, provided
the boundary term in equation (3) is properly taken

into account. We employed metallic boundary condi-

tions, because they are known to produce smaller

uncertainties in estimates of � than finite values of �0

[5, 22] (see also below). The fluctuation formula reduces

in this case to

� ¼ 1þ 3y hgi; g ¼ M2

N�2
; ð6Þ

where the dimensionless parameter y ¼ 4p���2=9 ’3.31

at the state point under consideration.

Table 1 shows the influence of the dipole elongation

on some properties of the Stockmayer fluid, namely

on the dielectric constant �, the diffusion constant D,

the dielectric relaxation times 	M and 	�, the reduced

configurational energy U� ¼ U=ðNuÞ, and the reduced

pressure p� ¼ p �3=u. The diffusion constant was calcu-

lated from Einstein’s relation

jriðtÞ � rið0Þj2
� 	

¼ 6Dt; t ! 1: ð7Þ

The relaxation times 	M and 	� were determined from

the autocorrelation functions CMðtÞ ¼ MðtÞ �Mð0Þ
� 	

=

Table 1. Influence of dipole elongation on some properties of a Stockmayer fluid at �* ¼ 0.82, T* ¼ 1.15 and �* ¼ 1.82.

d/� � 	M (ps) 	� (ps) D ð10�5 cm2=sÞ p* U*

0.02 99.6(� 1.4) 2.21 0.50 11.7 0.42 �10.1

0.3 98.4(� 1.5) 2.64 0.54 11.6 0.45 �10.2

0.4 94.0(� 1.5) 2.88 0.63 11.5 0.45 �10.3

0.5 92.4(� 1.7) 4.14 0.88 10.6 0.42 �10.6

0.6 102.3(� 3.2) 11.44 2.01 8.7 0.26 �11.7

0.61 104.7(� 3.6) 13.97 2.36 8.5 0.23 �11.9

0.62 100.8(� 3.5) 14.81 2.79 7.9 0.19 �12.1
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Figure 3. Autocorrelation functions CMðtÞ and ClðtÞ, for
the value d ¼ �=2. The inset shows a logarithmic plot,
confirming the exponential behaviour of CMðtÞ.
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M2
� 	

and ClðtÞ (see figure 3). For t>0:3 ps, CMðtÞ
exhibits an exponential decay expð�t=	MÞ typical of

a Debye dielectric. The relaxation of ClðtÞ is not well

fitted by a single exponential, and the corresponding

relaxation time was estimated from the integral of ClðtÞ.
We show in figure 4 the variation of the dielectric

constant with dipole elongation for a Stockmayer fluid

and for a dipolar soft sphere fluid. For almost point

dipoles (d*¼ 0.02), our result for the dielectric constant

of the DSS fluid is in good agreement with the value

98� 2 reported by Kusalik et al. [23]. At the state point

under consideration, the Stockmayer fluid has almost

the same dielectric constant: �point ¼ 99:6� 1:4. Our

data show that when d* increases, the dielectric constant

decreases and reaches a minimum about 6% lower than

�point at d� ’ 0:55. When d* is further increased, the

dielectric constant increases rapidly above �point, up to

the critical distance d�
c ’ 0:63. At this critical distance,

a phase transition occurs from an isotropic fluid to an

orientationally ordered ‘liquid crystal’ phase (see } 5).

The simulations show that the point dipole model

gives a reliable estimate of the dielectric constant over a

very wide range of extensions d, namely up to the point

where the system undergoes a phase transition. The

weak sensitivity of the dielectric constant on the

extension of the dipole, which contrasts with the large

sensitivity observed in water models [24], may be due to

the absence of a quadrupole moment in our molecules.

It is clear from table 1 that the dynamics of the fluid

slows down when d is increased: the diffusion coefficient

D drops and the relaxation times increase. This slow-

down is due to the formation of head-to-tail dipolar

chains in the system. Their entanglement makes these

chains less mobile than individual molecules in the

present high-density regime.

Long runs were needed to obtain even moderate

accuracy (about 2%) in the estimated dielectric con-

stants. Figure 5 shows the running estimate of � as a

function of simulation time. The slow convergence,

especially for large elongations of the dipole, can be

traced back to the long relaxation times 	M, as shown

by the following error analysis.

By definition, the probability distribution of the

sample having a total dipole moment of magnitude M

and arbitrary orientation is given by

PðMÞ / 4pM2e��FðMÞ; ð8Þ

where FðMÞ is the free energy of the system. From

macroscopic electrostatics, the energy of a spherical

dielectric sample, of dielectric constant � and carrying

a uniform polarization M=V , is

UðMÞ ¼ 2pM2

V

2�0 þ �

ð�� 1Þð2�0 þ 1Þ ; ð9Þ

where �0 is the dielectric constant of the surrounding

medium. Following Kusalik [25], we combine equa-

tions (8) and (9) with the approximation FðMÞ ’
Fð0Þ þUðMÞ. This leads to the following expression

for the probability distribution of fluctuations

g ¼ M2=ðN�2Þ:

PðgÞ ¼ Ag1=2 e��g; � � 9y

2

2�0 þ �

ð�� 1Þð2�0 þ 1Þ ; ð10Þ

where the normalization constant is A ¼ 2ð�3=pÞ1=2. The
mean of this distribution is g

� 	

¼ 3=ð2�Þ, in agreement
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Figure 4. Dielectric constant of a Stockmayer fluid (�*¼
0.82, T *¼ 1.15, �*¼ 1.82, continuous line) and of a
dipolar soft sphere fluid �*=0.8, T *=1.35, �*¼ 2,
dashed line) as a function of dipole extension.
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Figure 5. Convergence of � with simulation time, for dipole
elongations d*¼ d=� ¼ 0, 0.3, 0.4, 0.5 and 0.6.
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with the fluctuation formula (5). Though the distribu-

tion (10) neglects changes in entropy and is valid only

in the linear regime, it gives a good description of

fluctuations of the total dipole moment observed in

simulations of highly polar fluids [23].

The dielectric relaxation time 	M gives a time scale

for two measurements of M2 to be independent. In

a simulation of total duration t, the distribution (10) is

thus sampled n ’ t=	M times. After n such independent

measurements, the standard deviation in the average
Pn

i¼1 gi=n of the g factor is �g; n ¼ �g=n
1=2 where

�2
g ¼ ðg� hgiÞ2

� 	

¼ 3=ð2�2Þ is the variance of the dis-

tribution (10). The expected relative uncertainty in the g

factor,

I gh i �
�g; n

g
� 	 ¼

ffiffiffiffiffi

2

3n

r

¼
ffiffiffiffiffiffiffiffiffi

2

3

	M

t

r

; ð11Þ

depends therefore on the boundary condition �0 only via

the relaxation time 	M. Solving (5) for �, one has

�� 1 ¼
3y g

� 	

ð2�0 þ 1Þ
2�0 þ 1� 3y g

� 	 : ð12Þ

By the rules of propagation of errors, the relative

uncertainty in the dielectric constant minus one is thus

I��1 ¼
2�0 þ �

2�0 þ 1

ffiffiffiffiffiffiffiffiffi

2

3

	M

t

r

: ð13Þ

The error bars in figure 4 were determined from this

formula, and are in agreement with the fluctuations

observed in figure 5. In a Debye dielectric, the relaxation

time 	M is related to the Debye relaxation time 	D
(which is independent of boundary conditions) by [26]

	M ¼ 2�0 þ 1

2�0 þ �
	D: ð14Þ

Inserting (14) into (13), we see that larger values of

�0 will lead to smaller uncertainties in the dielectric

constant. This explains the faster convergence of �

observed when using metallic boundary conditions

[5, 22].

According to the present analysis, the slow conver-

gence of �, as determined from the fluctuation formula,

is due to the large value of the Debye dielectric

relaxation time [8] and the rather broad distribution

P(g). Moreover, the uncertainties in � are independent

of system size, as long as it is macroscopic. In large

systems, it may therefore be favourable to determine �

from correlation functions rather than from the

fluctuation formula.

4. Structure

4.1. The pair distribution function

The pair distribution function hð1; 2Þ ¼ hðr; l1; l2Þ of

the infinite system can be expanded in rotational

invariants [27]:

hð1;2Þ ¼ h000ðrÞþh110ðrÞF110ð1;2Þþh112ðrÞF112ð1;2Þþ �� � ;

where

F110ð1; 2Þ ¼ l̂l1 � l̂l2, ð15Þ
F112ð1; 2Þ ¼ 3ðl̂l1 � r̂rÞðl̂l2 � r̂rÞ � l̂l1 � l̂l2: ð16Þ

The functions Fl1l2l form an orthogonal basis for the

angular dependence of h(1, 2). The first projections are

h000ðrÞ ¼ hð1; 2Þ
� 	

l1;l2
¼ gðrÞ � 1; ð17Þ

h110ðrÞ ¼ 3 hð1; 2ÞF110ð1; 2Þ
� 	

l1;l2
; ð18Þ

h112ðrÞ ¼ 3

2
hð1; 2ÞF112ð1; 2Þ
� 	

l1;l2
; ð19Þ

where � � �h il¼
R

� � � dOl=4p denotes an unweighted

angular average over the orientations of l.

Plots of h000ðrÞ and h112ðrÞ are shown in figure 6 for

three elongations d of the dipole. As d is increased, the

stronger multipolar moments carried by the molecules

lead to a slight reduction of the fluid structure as

measured by the centre-to-centre distribution g(r), but

more orientational order, as measured by the projec-

tions h112ðrÞ and h110ðrÞ (the latter projection, not shown
in the figure, closely resembles h112ðrÞ).

The projection h112ðrÞ is related to the dielectric

constant of the fluid by the formula

lim
r!1

r3h112ðrÞ ¼ ð�� 1Þ2

�

1

4p�y
; ð20Þ
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Figure 6. Projections h000ðrÞ and h112ðrÞ of the pair
correlation function for three values of d� ¼ d=�.
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first derived by Nienhuis and Deutch [28]. A 512-

molecule system with a half box size of L=2� ¼ 4:3 is

too small to reach the asymptotic limit (20). The results

for the correlation function shown in figures 7–10 were

hence obtained using a larger system (simulation of 5555

molecules during 6 ns) under the same conditions

(�*¼ 0.82, T*¼ 1.15, �*¼ 1.82, d ¼ �=2, �0 ¼1).

Now L=2� ¼ 9:55, and figure 7 shows that r3h112ðrÞ
does reach the asymptotic value (20) at a distance

r ’ 7�, as in the case of point dipoles [18]. In [18], it was

observed that r3h112ðrÞ drops sharply for r greater than

L/2, even when the reduced size of the volume element is

properly taken into account in the normalization. In a

system with long range forces, care must be exercised in

the interpretation of correlation functions at distances

larger than half the box length (since the Ewald

potential differs strongly from the Coulomb potential

at these distances). Caillol analysed this problem

carefully, and derived a formula for the asymptotic

behaviour of h112ðrÞ valid for distances up to
ffiffiffi

2
p

L=2 [29].

Estimations of the dielectric constant from equation (20)

become more accurate when the size of the system is

increased, contrary to estimations based on the fluctua-

tion formula.

The projection h110ðrÞ is also related to the dielectric

constant, since the fluctuation formula (5) can be written

in the Kirkwood formy

ð�� 1Þð2�0 þ 1Þ
2�0 þ �

¼ 3y 1þ 4p�

3

Z 1

0

h110�0 ðrÞr2 dr
� �

: ð21Þ
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r /σ
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Figure 7. Convergence of r3h112ðrÞ at large distances towards
the limit (20). Data from a 6 ns long simulation of a system
of 5555 molecules (�*¼ 0:82, T *=1.15;�*¼ 1:82,
d *¼ 0:5).
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Since the LHS of equation (21) depends on �0, the

projection h110ðrÞ must also be sensitive to this boundary

condition, whence the introduction of a subscript �0.
Figure 8 shows a plot of r2h1101 ðrÞ, and the integral of

this function, for the same system as in figure 7. The

correlations extend up to r ’ 7�, just as in the case of

h112ðrÞ. This distance corresponds to the scale beyond

which the fluid behaves as a continuum dielectric and

obeys the equations of macroscopic electrostatics.

Though formula (21) is equivalent to (5), it is

worthwhile to discuss how the pair correlation function

depends on the dielectric constant of the external

medium. This problem has been addressed in [28] (see

also the perturbation theory presented in [5]); here, we

hope to give a clear and concise answer to the above

question, using simple physical arguments to justify the

formulas.

In a spherical sample, h110�0 ðrÞ is in fact the only

projection, among all the hl1l2l, to be strongly affected

by the boundary condition �0. This is due to the surface

term in the Hamiltonian (3), which corresponds to an

interaction energy between two molecules

4p

2�0 þ 1

l1 � l2
V

; ð22Þ

which has the angular dependence of F110ð1; 2Þ.
As the interaction (22) is independent of the distance

between the molecules, h110�0 ðrÞ does not decay in general

to zero at infinity, but rather to an �0-dependent
constant. We will prove below that this constant is

lim
r!1

h110�0 ðrÞ ¼ 2

V

ð�� 1Þ2

3�y�

�0 � �

2�0 þ �
ð23Þ

in the spherical geometry [5, 28, 29]. The constant (23)

vanishes only when using the boundary condition �0 ¼ �,

which mimics an infinite sample, or in the thermo-

dynamic limit V ! 1 (which is never reached in

simulations). The limit (23) is achieved in practice at

distances large compared to the decay length of h110ðrÞ,
but small compared to the size of the system.

The fact that h110�0 ðrÞ contains the Oð1=VÞ constant

contribution (23)at largedistances ensures thatKirkwood

formula (21) gives consistent results for different bound-

ary conditions. Indeed, when h110�0 ðrÞ is integrated over

the volume V ¼ 4pR3=3 of a large sample, as in the RHS

of equation (21), the constant (23) gives a finite contribu-

tion to the integral that is precisely what is required

to match the �0-dependence of the LHS of the equation.

In other words, equations (22) and (23) imply that

4p

Z R

0

h110�0 ðrÞr2 dr ¼ 4p

Z R

0

h110� ðrÞr2 drþ Vh110�0 ð1Þ;

when the samples are large enough (i.e. in the limit

R ! 1). When this identity is inserted into Kirkwood

formula (21), it is immediately clear that the predicted

dielectric constant is independent of �0.
In order to prove equation (23) with simple physical

arguments, we need to recall two basic results from the

statistical mechanics of polar liquids. The first result

is the expression of the density �ðr; lÞ of molecules at

r with orientation l in a polarized sample permeated by

a macroscopic field EðrÞ: [30]

�ðr; lÞ ¼ �

4p
1þ �� 1

3y
�l � EðrÞ

� �

þOðE2Þ ð24Þ

( y is defined after equation (6)). This formula is consis-

tent with the constitutive relation PðrÞ ¼ ð�� 1Þ=ð4pÞEðrÞ
of macroscopic electrostatics, since the average polari-

zation density in the fluid is by definition PðrÞ ¼
R

�ðr; lÞldOl.

The second result we need is the expression of the

effective dipole moment leff of a polar molecule held

fixed in a polar liquid (leff is defined as l, the dipole

moment of the fixed molecule, plus the total dipole

moment of the screening cloud around l). One may first

think naively that leff ¼ l=�: the fluid would screen the

dipole according to its dielectric constant. But this

would be treating the polar fluid as a dielectric

continuum everywhere, including in the interior of the

fixed molecule, which is obviously wrong. An exact

statistical mechanical calculation shows that the right

answer is [31]

l
eff ¼ �� 1

3y�
l: ð25Þ

(The expression ð�� 1Þ=3y� can itself be interpreted

as being composed of a factor ð�� 1Þ=3y arising from

local correlations around l, times the expected factor

1=� due to screening by distant molecules). With these

two results in mind, we can now understand easily

formulas (20), (22) and (23).

The result (20) for the large-distance behaviour of

the pair correlation function h(1, 2) can be seen as a

straightforward consequence of the screening effect (25).

By definition of the distribution functions, the density

of molecules at r2 with orientation l2, when a molecule

is known to be located at 1 ¼ ðr1; l1Þ is

�ð2j1Þ ¼ �ð2; 1Þ
�ð1Þ ¼ �

4p
ð1þ hð1; 2ÞÞ: ð26Þ

From (25), the electric field due to the fixed molecule

l1 is equivalent, at large distances r12 ¼ r2 � r1, to that

of a renormalized dipole moment leff1 . This dipolar field
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�J2ðleff1 � J1Þjr12j�1 is locally uniform and weak, so we

can apply the linear response result (24). Using (24) and

(25), we find that

�ð2j1Þ �
jr12j!1

�

4p
1� ð�� 1Þ2

9y2�
�vdipð1; 2Þ

� �

; ð27Þ

where vdipð1; 2Þ ¼ ðl1 � J1Þðl2 � J2Þjr12j�1 is the dipolar

potential, and we assume an infinitely extended sample.

Comparing (26) and (27), we obtain the asymptotic

behaviour of the pair correlation function:

hð1; 2Þ �
jr12j!1

ð�� 1Þ2

9y2�
ð��vdipð1; 2ÞÞ: ð28Þ

The result (20) follows then upon inserting (28) into (19).

Formula (23) can be interpreted in a similar way,

namely as arising from the interaction of a molecule

with the reaction field produced by the screened dipole

moment of another molecule. We recall from macro-

scopic electrostatics that a dipole l1 at the centre of a

spherical sample of radius R and dielectric constant �,

surrounded by a dielectric medium �0, produces a

uniform reaction field

E
½�;�0	
R ðl1Þ ¼

2

�

�0 � �

2�0 þ �

l1

R3
ð29Þ

inside the sample, because of the surface charge density

induced at the dielectric discontinuity [32]. In a finite

spherical sample, a molecule at a position r2 far enough

from l1—so that it does not disturb the screening cloud

around it—will interact therefore not only with the

dipolar field of leff1 , as in (27), but also with the reaction

field ERðleff1 Þ produced by the screened dipole moment

of this molecule. From (24), a term

�

4p
� �� 1

3y
�l2 � E

½�;�0	
R ðleff1 Þ; ð30Þ

must hence be added to (27) in a finite spherical sample.

The pair correlation at large distances, equation (28),

includes then the additional contribution

4p

3V

2ð�� 1Þ2

9y2�

�0 � �

2�0 þ �
�l2 � l1; ð31Þ

where we used (29), (25) and V ¼ 4pR3=3. Formula

(23) follows now from projecting (31) onto

F110ð1; 2Þ ¼ l̂l1 � l̂l2 according to (18).

We conclude this discussion by noting that the

interaction energy (22) used in the simulations, or

equivalently the surface term in the Hamiltonian (3),

can also be interpreted in terms of a reaction field effect.

Indeed, each polar molecule in the sample will create a

reaction field, acting on itself and on all other molecules,

that are given by equation (29) with � ¼ 1. Since the

Ewald sums (4) give the electrostatic energy between the

molecules in the case of a sample surrounded by a metal

(�0 ¼1), the correction to this energy to be used in the

Hamiltonian of a spherical system with boundary

condition �0 is

1

2

X

N

i;j¼1

ð�liÞ � E
½1;�0	
R ðljÞ � E

½1;1	
R ðljÞ

h i

¼ 2pM2

ð2�0 þ 1Þv ; ð32Þ

in agreement with (3).

4.2 Site–site correlations

Contrary to the point dipolar fluid model, the present

model with extended dipoles has well-defined site–site

distribution functions hþþðrÞ ¼ h��ðrÞ and hþ�ðrÞ [33].

From these we get the charge–charge correlation

function SðrÞ ¼ SintraðrÞ þ SinterðrÞ, where

SinterðrÞ ¼ 2q2�2ðhþþðrÞ � hþ�ðrÞÞ ð33Þ

describes the intermolecular correlations, while

SintraðrÞ ¼ 2q2�dðrÞ � 2q2�
dðjrj � dÞ
4pd 2

ð34Þ

is the intramolecular correlation function for a molecule

with a rigid dipole of extension d. The charge–charge

correlation is of special interest, because it satisfies the

two sum rules [34]:

neutrality :

Z

SðrÞ d3r ¼ 0; ð35Þ

Stillinger–Lovett :
1

�
¼ 1þ 2p�

3

Z

d3r r2 SðrÞ: ð36Þ

The site–site correlation functions and S(r) are shown

on figure 9 for d ¼ �=2. The charge neutrality sum rule

is found to be accurately satisfied:

�

Z 1

0

ðhþþðrÞ � hþ�ðrÞÞr2 dr ’ 8:8� 10�5: ð37Þ

The Stillinger–Lovett sum rule allows in principle the

determination of the dielectric constant from S(r), but

this route is not practicable in a computer simulation,

because of the unfavourable ratio ð1� �Þ=� which

saturates for large �, and also because it is difficult to

determine the second moment of SinterðrÞ accurately.

Figure 10 shows, however, that equation (36) is satisfied

within the uncertainties of our data.
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5. Orientational order

When the molecular dipole has an extension greater

than d ’ 0:64�, the simulations show spontaneous

formation of orientationally ordered phases, starting

from random initial configurations. At the state point

under consideration (�*¼ 0.82, T *¼ 1.15), we observed

phase coexistence between a dense liquid crystal and

a very dilute gas. In order to deal with pure phases,

we performed simulations at constant pressure

(p� ¼ p �3=u ¼ 0:22), rather than constant volume, for

d 
 0:62�.

The occurrence of orientational order was monitored

by computing two order parameters. The rank-one

order parameter P1 is defined as

P1 ¼
Mk
� 	

N�
; ð38Þ

where Mk � M � n̂n is the projection of the total dipole

moment along the director n (P1 ¼ 1 for a completely

polarized system). The second-rank order parameter P2

is the largest eigenvalue of the matrix

Q
� ¼ 1

N�2

X

N

i¼1

1

2
ð3�


i �
�
i � �2d
�Þ

* +

; ð39Þ

where �

i is the 
 component of the vector li. The

corresponding eigenvector n is the director. P2 ¼ 1 when

all dipoles are oriented parallel to n or �n.

Table 2 lists our results for these order parameters,

as well as for the dielectric tensor e ¼ ð�k; �?Þ. In a liquid

crystal with director n, the latter is determined by the

following generalization of equation (6):

�k ¼ 1þ y

�

M2
k
	

� Mk
� 	2

N�2
; ð40Þ

and a similar equation for �? in terms of the

perpendicular fluctuations

�

M2
?
	

� M?h i2
�

=N�2.

When d is increased above the critical distance

dc ’ 0:63�, the order parameter P2 jumps from essen-

tially zero to about almost one, indicating a first-order

transition to a highly orientationally ordered phase.

Figure 11 provides snapshots of the simulation cell

for d ¼ 0:64�. It is clear from the snapshots that the

molecules are associated into columns, composed of

chains of dipoles oriented head-to-tail. These columns

are all parallel to the director, and are arranged in a

hexagonal lattice in the perpendicular plane. The

simulations for d > 0:64� yielded similar liquid crystal

phases with columnar order, each with a different

Table 2. Constant pressure simulations of a Stockmayer
fluid at �* ¼ 0.22, T * ¼ 1.15 and �* ¼ 1.82. Data from
8 ns long simulations of 512 molecules, collected after
an equilibration period that lasted up to 10 ns. For
d 5 0.64�, the system is a ferro-electric liquid crystal
with columnar order. Uncertainties in �jj and �? are about
� 0.01 and � 0.02 respectively.

d/� h�*i P1 P2 �jj �?

0.62 0.80 0.08 0.07 � ¼ 103.8(� 4)

0.63 0.80 0.09 0.08 � ¼ 112.6(� 5)

0.64 0.95 0.97 0.91 1.16 1.46

0.65 0.98 0.66 0.91 1.28 1.56

0.66 1.03 0.98 0.94 1.02 1.43

Figure 11. Snapshots of the simulation cell of the Stockmayer fluid in the columnar phase. The hexagonal lattice in the plane
orthogonal to the director is apparent in the first snapshot. The dipoles are represented by a line joining the minus charge
(shown as a small bead) to the plus charge.
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orientation of the director. The system shows strong

spatial correlations in the direction of the director, but

it is still fluid in that direction, as indicated by the

mean-square displacement of the molecules. The latter

increases indeed linearly with time, with a diffusion

constant of about Dk ’ 0:09� 10�5 cm2 s�1.

In some runs (not listed in table 2), the system formed

two liquid crystal domains characterized by different

orientations of the director. As the transition to a single

domain is expected to occur on a time scale much larger

than our simulation time (8 ns), since it requires the

collective motion of many molecules, we included in

table 2 only results from runs where a single domain

formed spontaneously in less than 10 ns. Most runs

yielded fully polarized liquid crystals (P1 close to 1).

It is likely that the lower value of P1 measured in

the case d ¼ 0:65� is due to insufficient sampling of

phase space: the probability of a column inverting its

orientation during our simulation time is indeed very

small.

As the column configuration is energetically more

favourable for extended than for point dipoles (see

figure 2), it is not surprising that liquid crystal columnar

phases form at a much lower dipolar coupling constant

� ¼ ��2=T � than previously reported for point dipolar

fluid models; here � � 2:9, while columnar phases were

observed in the dipolar soft sphere fluid at � ¼ 9, and

in the dipolar hard sphere fluid at � ¼ 6:25 [9, 35].

A nematic ferroelectric liquid phase has been identified

in the Stockmayer model at � ’ 4 (a columnar phase

has not been seen previously in this model to our

knowledge) [36, 37]. The hexagonal lattice arrangement

found here is to be contrasted with the square lattice

reported in [35].

6. Conclusion

We have extended the considerable body of earlier

work on dipolar fluids by replacing the usual point

dipole on spherical molecules by physically more

relevant extended dipoles obtained by placing two

opposite charges symmetrically with respect to the

centre. The structural, dielectric and dynamical behav-

iour was monitored as the spacing d of the charges was

increased, keeping the total dipole moment �¼ qd fixed.

Periodic boundary conditions were used with proper

Ewald summations of the Coulombic interactions

within an infinitely large sphere bounded by a dielec-

tric medium of permittivity �0. The key findings are the

following:

a) Runs of several nanoseconds, longer than in

most previous studies, were required to obtain

estimates of the dielectric constant � within about

2% using the standard fluctuation formula (5).

A careful error analysis shows that ‘metallic’

boundary conditions (where �0 ¼1 at infinity)

yield optimal estimates of �.

b) The values of � deduced from the h112 and h110

correlation functions agree with the fluctuation

results within statistical errors, provided a suffi-

ciently large simulation cell is used to obtain

proper estimates of the asymptotic behaviour of

these correlation functions. The strong influence of

the boundary condition �0 on the projection h110ðrÞ
arises from the interaction of the polar mol-

ecules with the reaction field to the dielectric

discontinuity between the fluid and the external

medium �0. When �0 6¼ �, h110ðrÞ does not decay

to zero at large distances, but rather to a finite

constant of order 1=V [5, 28, 29]. The value of

this constant (equation (23)) was derived using

simple physical arguments based on macroscopic

electrostatics and linear response theory.

c) � has a non-trivial dependence on the ratio

d� ¼ d=�. Up to d� ’ 0:25, � agrees with the

point dipole result within statistical uncertainties,

thus illustrating the practical usefulness of the

point dipole limit. For d�00:3, � drops to a

minimum value roughly 6% below the point

dipole result when d� ’ 0:55. When d� is further

increased, � increases sharply and reaches a

maximum at d� ’ 0:6.

d) For still larger extensions d�, the system is seen

to undergo a transition, at constant pressure,

to an orientationally ordered state similar to a

columnar phase with a hexagonal ordering in the

plane orthogonal to the director. This phase is

characterized by large values of the usual

orientational order parameters P1 and P2. At

the same time the dielectric tensor becomes

anisotropic, and the mean dielectric constant is

very low (� ’ 1:4), signalling the strong suppres-

sion of dipole moment fluctuations. The transi-

tion to the columnar phase occurs at a value of

the dipole moment well below that required to

observe the transition with point dipoles [9, 35].

e) The dynamics, characterized by the relaxation

times 	M and 	� of the total and individual dipole

moments, as well as by the self-diffusion constant

D, slows down very significantly as d* increases,

due to the enhanced tendency of the system

to form parallel strings, which eventually lead to

the columnar phase. In the latter, the diffusion

coefficient Dk parallel to the director is about

two orders of magnitude smaller than D in the

isotropic phase, but still substantial, showing

that the system behaves like a one-dimensional

fluid.
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The present results are for a single high-density

�*¼ 0.82, and a single pressure in the anisotropic

phase ( p*¼ 0.22, corresponding to �h *i ’ 1). Clearly

more work is needed to be able to map out a complete

phase diagram of the Stockmayer fluid, in view of

the additional variable d*. The present work illustrates

the strengths and deficiencies of the point–dipole

model. Many simple molecular systems fall in the

region d*’ 0:5, where the deviations from point dipole

behaviour begin to be substantial.
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